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ABSTRACTA

A decision-theoretic framework is proposed for evaluating the efficiency of simulation estimators.

The framework includes the cost of obtaining the estimate as well as the cost of acting based on the

estimate. The cost of obtaining the estimate and the estimate itself are represented as realizations of

jointly distributed stochastic processes. In this context, the efficiency of a simulation estimator based

on a given computational budget is defined as the reciprocal of the risk (the overall expected cost).

This framework is appealing philosophically, but it is difficult to apply in practice (e.g., to compare the

efficiency of two different estimators) because only rarely can the efficiency associated with a given

computational budget be calculated. However, a useful practical framework emerges in a large sample

context when we consider the limiting behavior as the computational budget increases. A limit theorem

established for this model supports and extel. a fairly well known efficiency principle, proposed by

Hammersley and Handscomb (1964), p. 22: 'The efficiency of a Monte Carlo process may be taken as

inversely proportional to the product of the sampling variance and the amount of labour expended in

obtaining this estimate." '  .
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In this paper we develop a framework for evaluating the efficiency of alternative

simulation estimators. Our goal is to effectively capture the interplay between the

variability of an estimator and the computational effort required to calculate it. We begin

by developing what we regard as a philosophically appealing decision-theoretic model of

estimation with a budget constraint. Unfortunately, this model does not seem so useful in

practice, because the efficiency of an estimator is usually difficult to calculate. However,

we obtain a more useful framework in a large sample context by considering the limiting

behavior as the computational budget increases. Thus, our primary focus is on asymptotic

efficiency.

We believe that our asymptotic efficiency framework provides an effective means for

comparing EITs (efficiency improvement techniques). Our analysis also supports

replacing the classical notion of VRT (variance reduction technique) by EIT. An example

in which the efficiency may be improved with higher variance occurs when we estimate the

mean sojourn time in a queueing system: The sample variance is usually less if we use a

direct sample mean than if we use an indirect estimator based on the number in system

and L = XW; see Glynn and Whitt (1989). However, it nevertheless may be more

efficient to use the indirect estimator; see Nozari and Whitt (1988), p. 313. Another

example in which an EIT is associated with higher sample variance occurs when estimating

expected discounted costs; see Fox and Glynn (1989a).

In many simulation settings, our asymptotic efficiency framework provides theoretical

support for an efficiency principle proposed without much discussion by Hammersley and

Handscomb (1964), pp. 22, 51:

The efficiency of a Monte Carlo process may be taken
as inversely proportional to the product of the sampling (1)
variance and the amount of labour expended in obtaining
this estimate.
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This efficiency principle is also cited on p. 35 of Bratley, Fox and Schrage (1987) and

p. 279 of Wilson (1985). (The present paper is an extensive revision of Glynn and

Whitt (1986), where we first discussed (1).)

Efficiency principle (1) can be considered intuitively reasonable. However, as a

byproduct of our analysis, we will see that in several different estimation settings that this

criterion is not appropriate and, in fact, leads to incorrect conclusions. Nevertheless, in

most simulation estimation problems, efficiency principle (1) does apply. In the context of

such problems, our paper makes several contributions: First, we describe an appropriate

domain of applicability for (1). Second, we give a precise interpretation to the terms

"sampling variance" and "amount of labour expended". In addition, in (1) the "amount

of labour expended" is apparently considered deterministic. Our analysis extends the

principle to the setting in which the amount of labour expended is itself stochastic, which

is typical of most simulations.

The rest of this paper is organized as follows. In Section 1 we introduce the decision-

theoretic framework for estimation with a budget constraint. In Section 2 we introduce the

concept of asymptotic efficiency of an estimator. In Section 3 we present a random-time-

change limit theorem that provides the basis for characterizing the asymptotic efficiency of

an estimator. The remaining sections are primarily devoted to examples illustrating how

the asymptotic efficiency framework can be applied, but there also are some new

asymptotic efficiency results for specific estimators.

In Section 4 we describe the canonical case, in which the asymptotic efficiency is

consistent with (1), and discuss five examples. In Sections 5 and 6 we discuss examples in

which (1) needs to be modified, because there is a non-canonical estimator convergence

rate. Section 5 focuses on subcanonical estimator convergence rates, while Section 6

focuses on supercanonical estimator convergence rates. The examples of subcanonical
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estimator convergence rate discussed in Section 5 are the Kiefer-Wolfowitz (1952)

stochastic approximation algorithm, for which we draw on results of Ruppert (1982); a

recursive variant of a derivative estimator discussed by Zazanis and Suri (1986); other

recursive estimators related to the replication schemes for limiting expectations in Fox and

Glynn (1989b); and long-range dependency as discussed by Cox (1984). Supercanonical

estimator convergence rates are less likely to occur; the one example in Section 6 is a

Monte Carlo integration rotation estimator, which is a variant of a rotation estimator in

Fishman and Huang (1983).

In Section 7 we discuss independent replications together with other estimation

procedures, and show that independent replications typically cause the efficiency to

improve, remain unchanged or get worse, respectively, when the estimator convergence

rate is subcanonical, canonical or supercanonical. Finally, we present all proofs in

Section 8.

1. Efficiency with a Budget Constraint

Our decision-theoretic model for simulation estimation has eight elements:

(i) an unknown parameter a,

(ii) a loss function L(a), a real-valued function specifying the loss associated with

estimating a by a,

(iii) the experiment, a stochastic process (Y, C) - {[Y(t), C(t)]: t ;- to}, to ; 0, with

Y(t) representing the time-dependent estimator of a and C (t) representing the cost

of obtaining the estimator Y(t), we refer to Y as the estimation process,

(iv) a budget constraint c,

(v) the realized length of the eperiment, T(c) - sup{t ;P O:C(t) : c},
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(vi) the budget-constrained estimator Y(T(c)),

(vii) the risk function R(c) = EL(Y(T(c))),

(viii) the efficiency e(c) = 1IR(c).

Our goal is to estimate the parameter a in (i). We assume that the parameter a is a

real number, but the same ideas apply more generally.

We regard estimation as a special case of decision making under uncertainty, so we use

the decision-theoretic framework advocated by Wald (1950), Savage (1954) and others;

e.g., see Chapter 1 of Ferguson (1967). Of course, the loss function L in (ii) is actually a

function of a as well as a, which may be important in a decision-theoretic analysis (e.g.,

in a Bayesian analysis using a prior on a), but we do not emphasize this aspect. We

assume that L is nonnegative with L(a) = 0. The classical squared error loss function

arises when L (a) = (a - a) 2 , but we do not restrict attention to this case.

We have represented costs and benefits in two ways: via the loss function L and the

cost process C. There are of course many different kinds of costs and benefits that might

be considered. Many of these can easily be incorporated in L or C, but some cannot, e.g.,

the cost of the analyst's time; see p. 279 of Wilson (1985). Also, unexpected benefits

beyond the original goals are often realized from simulation experiments. However, it is

not our purpose to try to examine all costs and benefits in detail. We believe that the

relatively simple two-cost framework above captures essential features for developing a

useful efficiency principle, especially for evaluating alternative EITs.

Basic to our approach is the formulation of key features of the experiment as a

stochastic process. In (iii) we have represented the estimator Y(t) and the cost of

generating that estimator C(t) as jointly distributed stochastic processes. For example, Y

might be a sample mean process; i.e., there might be another process Z such that
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Y(t) = t-'fZ(s)ds for t > 0. We typically think of the cost C(t) as being simply
0

computer time, but there could be other cost components as well. We assume that the

sample paths of C are nondecreasing nonnegative real-valued functions of t that are

unbounded above. The randomness is appropriate because the cost associated with a given

portion of the experiment is indeed often random. For example, when a sequential

stopping procedure is used to terminate a simulation, the total number of observations

generated will be random. It is important that we make no assumption about the joint

distribution of Y and C, which in many applications will be quite complicated.

The experiment is assumed to evolve in "time" t, where t is some natural measure of

the length of the experiment. We assume that the realized length of the experiment is

T(c) in (v), the "time" when the budget c in (iv) is exhausted. The final budget-

constrained estimator is then Y(T(c)) in (vi). For example, in a regenerative simulation, t

(for t integer) might represent the number of regenerative cycles, while the cost C(t) is the

random effort required to generate those cycles. The actual estimator Y(T(c)) then is

based on the random number T(c) of cycles achieved under the computational budget c.

We defime the efficiency of the experiment for a given computational budget c as the

reciprocal of the risk R (c) in (vii). With everything else held fixed, one experiment is

said to be more efficient than another if its efficiency is greater. Of course, direct

comparisons of this sort are usually difficult to make, because the efficiency is usually

difficult to calculate.

2. Asymptotic Efficiency

Our goal now is to turn the philosophically appealing model of Section I into a

practical basis for evaluating estimators by considering the asymptotic behavior as c -
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The resulting notion of asymptotic efficiency is thus applicable only in a large sample

context, but large samples are typical of most simulation experiments.

A concept of asymptotic efficiency emerges naturally from the notion of efficiency in

Section 1. In particular, we say that one estimator is more asymptotically efficient than

another if it is more efficient for all sufficiently large c. It is significant that when we

focus on asymptotic efficiency, the analysis typically simplifies greatly. Then only the

central-limit-theorem behavior of the estimation process Y and the law-of-large-numbers

behavior of the cost process C matter; see §3. Moreover, the specific loss function often

ceases to matter.

We establish conditions, which are often verifiable, under which

rn c'R(c) = v - 1  (2)

for positive constants r and v. The pair (r, v) is our proposed characterization of

asymptotic efficiency. We call r the asymptotic efficiency rate and v the asymptotic

efficiency value. To compare two experiments with asymptotic efficiency parameter pairs

(rl,vl) and (r 2 ,v 2), we use a lexicographic criterion. We say estimator 1 is more

asymptotically efficient than estimator 2 if r, > r 2 or if r, = r2 and v, > v2. If r, > r 2 ,

then we say that estimator 1 has a more asymptotically efficient rate. If r, = r2 , then we

say that the asymptotic relative efficiency (ARE) of estimator 1 compared to estimator 2 is

VI/V2.

Note that the lexicographic criterion is consistent with the previous definition, i.e.,

estimator 1 is more asymptotically efficient than estimator 2 with the lexicographic

criterion if and only if estimator 1 is more efficient than estimator 2 for all sufficiently

large c.
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It remains to show how the basic elements (L, Y, C) in the model of Section 1

determine asymptotic efficiency parameters r and v in (2). For this, we exploit a random-

time-change limit theorem.

3. The Supporting Limit Theorem

We now establish a limit theorem for the budget constrained estimation process

Y(T(c)) that provides a basis for characterizing the asymptotic efficiency of the experiment

(Y, C). At first, we do not consider the loss function L.

Our key assumption for the estimation process Y is a functional central limit theorem

(FCLT). For this purpose, let D - D((O, oc), R) be the set of real-valued functions on the

open interval (0, =) that are right-continuous with left limits, endowed with the standard

Skorohod J1 topology, and let =: denote weak convergence (convergence in

distribution); see Billingsley (1968), Ethier and Kurtz (1986) and Whitt (1980). (We use

the open interval excluding 0 to avoid unimportant problems near the origin in estimators

such as t- f0Z(s)ds.) For each e > 0, let Ot = {V(t) :t > 0} be the random element of

D defined by

09(f) = e-' [Y(t/e) -a] , t > 0 , (3)

for a positive constant -y. (We assume that Y is a random element of D.) We will assume

that OJ, =D , in D as a - 0 for some limit process 68, and write

a-e[Y(te) - a] = 'ip(t) in D as a - 0. (4)

For practical purposes, the FCLT (4) is essentially equivalent to the ordinary CLT in R

obtained by focusing on a single t in (4), say t - 1, but an ordinary CLT is, technically

speaking, slightly weaker than a FCLT. (See Example I of Glynn and Whitt (1988).) An

easy consequence of (4) is that Y(t) - a as t - =, where - denotes convergence in
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probability. It is significant that (4) holds in great generality, so that this assumption is

indeed typically satisfied. In most cases, -y = 1/2 (the canonical convergence rate) and

09(r) is art- B (t), where B(r) is standard (zero-drift and unit variance) Brownian motion,

so that 9(1) has a zero-mean Gaussian distribution with variance 0'2, but there are other

possibilities.

We also will assume limiting behavior for the cost process C, but it is significant that

we need to know much less about C. In particular, we only assume a simple stochastic

growth condition corresponding to an ordinary strong law of large numbers (SLLN) for C;

i.e., we will assume that

t-OC(t) -X - w.p.l as t - , (5)

where 0 is a positive constant. Typically 1 = 1, but we give examples in which 1;

see Example 6.1.

It is significant that we do not directly assume anything about the joint behavior of Y

and C. It turns out that we are able to establish the joint limiting behavior for Y and C,

and thus the limiting behavior for the final budget-constrained estimator Y(T(c)), from

these assumptions alone. Let = denote equality in distribution.

Theorem 1. If the FCLT (4) holds for the estimation process Y(t) with the limit process

V(t) being continuous at t w.p.I for each t and the SLLN (5) holds for the cost process

C(r), then a FCLT holds for the budget-constrained estimation process Y(T(c)), i.e.,

c'P [Y(T(cr) - ax] - J(X t11/P) in D as c - , (6)

the associated CLT holds, i.e.,

c0'0[Y(T(c)) - ot] -4o OI(X) d X_*j'%(1) in R as c - , (7)

and the associated WLLN holds, i.e.,
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Y(M(c) R ot as c - ()

To prove Theorem 1, we first relate the SLLN for C (t) in (5) to an associated SLLN

for T(c) in §1(v). This result is well known for 13 = 1, and essentially the same proof

works for 13 * 1.

Lemma 1. Let X and 0 be strictly positive constants. Then t-OC(t) - X-P w.p.1 as t -

if and only if c 11 T(c) - X w.p.l as c - =.

Next, as in Theorem 4 of Glynn and Whitt (1988), we note that the ordinary SLLN for

T(c) established in Lemma 1 is actually equivalent to a FSLLN (a functional version).

Lemma 2. If c-"AT(c) - X w.p.1, then c-11PT(ct) -Xt 11  w.p.1 in D([O,=),R), i.e.,

sup Ic-11 T(ct)- X:t/" O} -0 w.p.1 as c -= for all T.

Finally, we apply the continuous mapping theorem with the composition map, as in

Section 17 of Billingsley and Section 3 of Whitt (1980); see Section 8 for the details.

Remarks (3.1) For our applications, we only use the CLT (7), but the FCLT (6) can be

useful as well. The FCLT condition (4) is needed in Theorem 1 even to get the CLT (7);

see Example 4 of Glynn and Whitt (1988). We could work with the CLT version of (4)

instead of the FCLT if we added extra conditions, such as independence or the Anscombe

(1952) condition; see p. 15 of Gut (1988). The Anscombe condition is closely related to

the tightness associated with the FCLT; see p. 55 of Billingsley.

(3.2) Typically the limit process V(t) in (4) is crt- B(t), where B(t) is standard

Brownian motion, which has continuous sample paths, but we do not require that the

sample paths of V be continuous. For example, B could be replaced by a stable process,

which occurs as the limit for normalized partial sums of i.i.d, random variables when the

random variables have infinite variance. For applications, see Mandelbrot (1963) and
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Fama (1963).

(3.3) In the vast majority of cases V(l) d aN(O,1), i.e., (WK1) has a centered Gaussian

distribution with variance 0'2. In this case, the practical implication of the CLT (7) is that

Y(T(c)) = L + N (0, 1) for large c. (9)

If all candidate experiments satisfy (9), then to achieve high asymptotic efficiency, without

considering any loss functions, it is natural to first maximize the convergence rate y/y and

then minimize ) - foa. Indeed, given the approximation (9), I Y(T(c)) - C 1,

[Y(T(c)) - e] and [Y(T(c)) - a]-, where x - max{x,0} and x- - - min{x,0}, are all

minimized in the stochastic order sense with this criterion. Indeed, this is true provided

the estimators satisfy %(l) d crZ for a fixed random variable Z.

(3.4) In (4) and (6) we consider limits as a - 0 and c - wc. This is not different in any

essential way from considering limits involving a sequence, e.g., a = 1/n for n integer; see

p. 16 of Billingsley. U

We now consider the asymptotic behavior of the risk associated with a large class of

loss functions. Unlike Remark 3.3, we now do not require that 9(1) d oN(0,1). In

order to get convergence of moments from convergence of distribution, we assume

uniform integrability; there are many sufficient conditions; see p. 32 of Billingsley and

Sections 1.7,8 and 11.5 of Gut (1988). In practice, we would rarely worry about this

technical condition. A simple sufficient condition is for the loss function to be bounded.

Corollary 1. In addition to the assumptions of Theorem 1, suppose that the loss function

L has two continuous derivatives with L'(c) - 0 and L"(41) > 0 and

{c 2"'PL (Y(T(c))) c > 1} is uniformly integrable. Then



liur c2''R (c) - 2-'L" (a)- 2 "E Fj(1) 2] , (10)

so that the asymptotic efficiency parameters are

r and v- 2 1 (11)~~~L"(aL) X-'E [ ()]

Remarks (3.5) If L is twice differentiable and a is a strict local minimizer of L, then the

conditions L'(a)=0 and L"(a)> 0 must be satisfied.

(3.6) Suppose that we compare two estimators satisfying the assumptions of

Corollary 1 with common P and y, but with subcanonical convergence rate -y < 1/2 so that

r < 1. Moreover, suppose that estimator l's asymptotic mean square error is half that of

estimator 2 (i.e., E V1 (1)2 =E oI2(1)2/2), while the cost rate is twice that of estimator 2

(i.e., X "1 I 2X2 1), then the asymptotic efficiency value of estimator 1 is greater than that

of estimator 2 by a factor of 21-21. This, of course, is inconsistent with the Hammersley-

Handscomb efficiency criterion (which was clearly formulated with -y= 1/2 in mind). This

analysis indicates that the variability of the estimator tends to be more important than

there is subcanonical convergence. Thus, in the trade-off between variance reduction and

(possible) additional computational complexity, variance reduction usually is top priority

when-y< 1/2. U

It is significant that the form of the loss function does not affect asymptotic efficiency

under the assumptions of Corollary 1, because L appears in r and v only through the

constant multiple L"(a) in v. In other words, if two candidate estimators satisfy the

assumptions of Corollary 1, then our lexicographic efficiency criterion provides a ranking

that is independent of the specific form of the loss function. Specifically, estimator 1 is

more asymptotically efficient than estimator 2 if Y1/11 >72/02 or if -yl/Al = y2/02 and

X2"272E(%2(1)2] > X, "2", E[Yi(1)2]; note that the criterion is independent of L. Moreover,
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d
note that (11) is consistent with (9) when aK1)= oN(O, 1). Formulas (9) and (11)

complement each other, because (9) applies to loss functions beyond those considered in

Corollary 1, whereas (11) applies to non-Gaussian distributions (and distributions not all

related by a scale transformation).

Of course, the loss function need not satisfy the conditions of Corollary 1, but other

cases can be treated in a similar way. For example, here is another natural case.

Corollary 2. In addition to the conditions of Theorem 1, suppose that L (a) = Ia - L IP

for p > 0. If {cP "' IY(T(c)) - :c 2 1} is uniformly integrable, then

lim cP'YtOR(c) - X-P'YE[109(1)IP] , (12)
C-=

so that the asymptotic efficiency parameters are

r= and v - 1 (13)
-P'E[Wl)J1) ] (3

In general, (13) is not consistent with (11), so that the form of the loss function can

matter. However, when is fixed and ° (1) A oN(O, 1), (13) is fully consistent with (9)

and (11), and E[Jl)K1] -- o E[N(O,1)IP].

Remark (3.7) In general, the cost process C(t) can affect the asymptotic efficiency rate r

through 0, but in the canonical case of 0 = 1, the asymptotic efficiency rate is determined

solely by the estimator convergence rate y. Hence, to achieve maximum asymptotic

efficiency when P = 1, the first objective is to maximize the estimator convergence rate y.

Then, among those estimators with maximum estimator convergence rate, we want to

maximize the asymptotic efficiency value. U

Obviously the cost process usually grows linearly, so that P - 1 in (5). However,

other cases do arise, as is illustrated here in Example 6.1. The following variant of the
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SLLN for martingale differences is a basis for establishing the required nonlinear SLLN

tJ
for C(t) when C(t) = , r - 0, where [J is the greatest integer less than or equal to

I-I

t. We allow the variables r to be dependent as well as non-identically distributed, but

most of our applications are under the extra condition of independence. (For an

exception, see Example 4.5.)

Theorem 2. Let {;n:n 2 1} be a sequence of real-valued r.v.'s on an underlying

probability space (fl,9;,P) and let {,, : n 2 1} be an increasing sequence of sub-ar-fields of

9; such that "rn is measurable with respect to ;,,. If

n -b E (,r. I1)- a w.p.lI as n -

and

n-dVar[ -E( [ -)r - c as n - =

withb > -landd< 2b+, then

n-b -1 r "i - al(I + b) w.p. I as n - =.
I-,1

4. The Canonical Case

The canonical case arises when the conditions of Corollary 1 to Theorem 1 hold with

-y = 1/2, = - I and %kt) A tlaB(t) for each t where B is standard Brownian motion, so

that %1(l) crN(0,1), i.e., Vl() is distributed as a zero-mean Gaussian distribution with

variance a 2. From (11), the asymptotic efficiency rate is then r = 1 and all interest

centers on the asymptotic value, which is

K 2__
V = - for K- 2 (4v lL"() (14)

We interpret (14) as support for (1):
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Asymptotic Efficiency Principle. In the canonical case, the asymptotic efficiency value v may

be taken as inversely proportional to the product of the sampling variance rate a' and the

cost rate X-

This interpretation for the cost rate X- 1 is clear from (5). For a 2 , note that under the

conditions of Corollary 1 to Theorem 1 (which includes uniform integrability) that

t VarY(t) - a 2 as t -m, so that VarY(t) = a 2/t. In this setting, we can take the

asymptotic value v as being inversely proportional to the product of the sampling variance

VarY(t) = a02 /t + o(t- 1 ) and the cost C(t) = X-t + o(t).

The rest of this paper is primarily devoted to examples. The five examples in this

section all produce the canonical case, for which the asymptotic efficiency principle above

and (1) are appropriate.

Example 4.1. Independent Replications. Suppose that a can be represented as a = EX for

some random variable (r.v.) X. (X might correspond to the number of customers served in

a queue during the time interval [a, b].) Then c can be estimated by the sample mean

'3

= n-1 Xi, where X 1 ,X 2,... are i.i.d. copies of X. Then the estimation process here
i-i

is Y(t) = XFf L, t 2 1 (where again itJ is the greatest integer less than or equal to t).

Let ri be the amount of computer time required to generate Xi. Disregarding the

usually negligible amount of computer time required to initialize the simulation and

compute Y(t) from the XI 's, we let the cost process be C(t) = ',r. It seems reasonable
i'm

to assume that the r's are positive i.i.d. r.v.'s. For most applications, ri will indeed be

random. For example, in any algorithm in which acceptance/rejection is used as a variate

generation technique, ri will be random.



- 15-

If 0 < a 2 < M, where a 2 = VarX, then the FCLT (4) holds for Y(t) with y = 1/2

with %i(t) = t-lcrB(t) with B being standard Brownian motion, by Donsker's theorem,

p. 137 of Billingsley (1968). If 0 < ETj < m, then the SLLN (5) holds for C(t) with

P = 1. Hence, the conditions of Theorem 1 hold for the canonical case. Moreover, for

this example, these assumptions also imply the uniform integrability needed for Corollary

1; see pp. 32, 54 of Gut (1988).

Example 4.2. Functions of Mean Vectors and Regenerative Simulation. Let

X [X(l), ... X(d)] be an Rd-valued random vector with = EX. Suppose that

a= g(p.) for some known smooth function g :Rd - R. In this case the estimation process

is Y(t) = g (X td), t 2 1, where X is the sample mean of i.i.d. random vectors distributed

as X. This estimation process arises with ratio estimators; then d = 2, g (x1 , x 2) = x1 /x 2

and a = EX(1)/EX(2). A ratio estimator is often used with the regenerative simulation

method to calculate the steady-state mean of a real-valued regenerative process Z. Then

X(1) is the integral of Z over a regenerative cycle and X(2) is the duration of the cycle.

Let the cost of generating the ith cycle be r and let the cost process C(t) be defined as

in Example 4.1. If the computational time to generate the cycle can be regarded as

approximately equal to the length of the cycle, then ri A X(2), which is of course typically

random.

The following theorem establishes the FCLT condition in Theorem 1, without

requiring that the random vectors X, actually be i.i.d. (We apply this extension in

Example 4.4 below.)

Theorem 3. Suppose that y > 0, E Rd and

E-"[*jt) - L] -0 (t) in D as a - 0 ,

where *, and Ot are random elements of D. If g :R d - RI is continuously differentiable in
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a neighborhood of i., then

e-'[g(*Ct)) - g(p.)] =* Vg(I.)qi(t) in D as E - 0.

Returning to our example, we assume that E IIX 112 < W, where I II is the Euclidean

norm in Rd. Then the multivariate version of Donsker's theorem implies that

n -1/2( "X,- ) =gp rl" 12B(t) in D as n -=Ln'i

where B is a standard Brownian motion in Rd (with d mutually independent 1-dimensional

marginal standard Brownian motions) and r is the covariance matrix of X. The matrix

r1 1/2 is not uniqu.ely specified by 1, but may be taken as the lower triangular matrix

obtained by Cholesky factorization; see p. 84 of Feller (1971) and p. 165 of Bratley, Fox

and Schrage. Hence,

e-1/2 We rI/l2B (t)lt in D ase- 0 .

Finally, by Theorem 3, if g is continuously differentiable in the neighborhood of ., then

%1, =- in D where "Q(t) = Vg(pz)F 112B(t)/t. The remaining conditions in Theorem 1

and Corollary 1 hold as in Example 4.1. (For the uniform integrability, it suffices to treat

the marginals separately.) Then we have the canonical case, i.e., the limits in (7) and (8)

with y = 1/2, [ = 1, X- I = Er, O1(1) d aN(0,1) and

Cr2 = Vg()rVg(p),. (15)

Example 4.3. Steady-States Means. Suppose that a is the steady-state mean of a real-

valued stochastic process X w {X(t) :t 2 0}, and suppose that we intend to estimate aL with

the sample mean process Y(t) - X(tr) - t- fX(s)ds, t > 0. Thus, we assume a FCLT

0

for the cumulative process associated with X, i.e.,
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e 1f X(s)ds - at/e] = oB(t) in D as e - 0 (16)
0

which, as in Example 4.2, immediately implies V, =O Vt as e - 0 where %1(t) = oB(t)It.

A variety of different assumptions on the structure of X give rise to such a FCLT. For

example, there are FCLTs of the form (16) when X is stationary and satisfies a mixing

condition (e.g., Section 20 of Billingsley), when X is regenerative (e.g., Glynn and Whitt

(1987)) and when X is a martingale (e.g., Chapter 7 of Ethier and Kurtz (1986)). The

great variety of very robust hypotheses which lead to FCLTs of the form (16) lead us to

view (16) as a very general assumption, which can be expected to hold for virtually all

"real world" steady-state simulations.

Remark (4.1) Suppose that X(r) =0 X(=) as t - =. It is important to note that it is

typically not the case that o02 = Var X(=) for a in (16). The constant o.2 in (16) is the

time-average variance constant of X, which reflects the correlation structure of X. In

particular, if X is a uniformly integrable stationary stochastic process having an integrable

covariance function, then

a2 = 2f cov(X(0),X(r)dt . (17)
0

Formulas for o02 when X is a function of a Markov process appear in Glynn (1984),

Whitt (1989) and references cited there. The time-average variance constant cr2 is difficult

to estimate. Consequently, much attention has been devoted in the simulation literature to

its estimation; see Section 3.3 of Bratley, Fox, and Schrage (1987). U

Turning to the process C (t), we assume a SLLN of the form (5) holds with = 1. As

in the case of assumption (16). a wide variety of steady-state simulations possess behavior

that is characterized by such a SLLN. For example, suppose that the process X takes the

form X(t) = f (Z(r)) for some real-valued function f. One then simulates X by simulating

Z. It seems reasonable to assume that C(r) - fth(Z(s))dr for some nonnegative real-
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valued h. If Z is a positive recurrent regenerative process, then (5) is known to hold with

P = 1 under suitable moment conditions. Similarly, if Z(t) is stationary and ergodic, then

so is h(Z(t)), so that we obtain (5) with I3 = 1 if Eh(Z(t)) < =. As with (16), we view

(5) as a relatively mild regularity hypothesis on the steady-state simulation. In this

example the constant X can be viewed as the rate at which simulation time is produced as a

function of computation time.

Example 4.4. Functions of Steady-State Means. As a generalization of Examples 4.2 and

4.3, suppose that oL = g(i ) where p. is the steady-state mean of an Rd-valued process X,

and that Y(t) = g (X(r)) where X(t) is the sample mean. This kind of estimator arises in

calculating the steady-state conditional probability

P(X(t) EAIX(t) EB) = P(X(t) EAB)/P(X(t) EB) and in estimating the steady-state

variance. (In this case, g is again the ratio functional g(x 1 ,x 2) = x1 /x 2.) We can

combine a d-dimensional analog of (16) with Theorem 3 to obtain the desired FCLT

V , =* V as e -0. As in Example 4.2, if % (I) = Vg() 1 /2B(t)/r, then 472 is given by

(15). The cost can be treated as in Example 4.3.

Remark (4.2) As in Remark 4.1, here r is not the covariance of the steady-state variable

X(m). For a reasonably behaved stationary process, r can be represented as

r f E(X(0) - p)'(X(s) - ..)ds + f E(X(s) - .)'(X(O) - )ds.

As in the scalar case, r is hard to estimate.

Example 4.S. The Robbins-Monro Stochastic Approximation Algorithm. To depart from

the familiar sample mean setting, we now briefly consider the Robbins-Monro (1951)

stochastic approximation algorithm (denoted by RM) which is finding application in

simulation; see Wasan (1969), Kushner and Clark (1978) and Glynn (1986). Our goal is

to find the parameter a = 0 that minimizes a smooth function P(O). We assume that
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there exist random variables Z(O) such that P'(0) = EZ(0). To calculate 00, we use the

RM algorithm 0n+1 = 0n-cn +I, n a 0, where {cn:n ;- 0} is a sequence of

deterministic nonnegative constants and X, +1 is independently generated, conditional on

On, i.e.,

P(X,+I EAIO0 ,X0, . .n. ,,,Xn) = P(Z(On) EA)

Then the estimation process is defined by Y(t) = rlj, t ; 0. We assume that the time

rn+ I required to calculate 0,, +1 from 0n has a conditional cdf

P('rn 1 :[ tIT0,00 ..... n,,) = F6.(t)

for some family of cdf's F,(r) indexed by 8. Then C(t) = , t ;, 0.
1-11

Now assume that c, = c/n for c > 0 and that P is continuously differentiable with

cp'(0") > 1/2. Kersting (1977) and Ruppert (1982) have shown that under mild

additional regularity assumptions that I, =* IV as a - 0, as needed for Theorem 1, with

-y = 1/2 and

I) = 0 t-(D+)B(t 2D+l) at -'B(t) , (18)

where D = cp'(0") - 1, cr 2 = C2K2(2D + 1) - and K 2 = VarZ(0"). Note that the limit

process {fk(t):t ; 0} is not of the form {crB(t)/t:t 01}, but we still have the canonical

case, because %J(t) in (18) has the same one-dimensional marginal distributions as

Crt - B (t) for all t (which can be seen by calculating the variances). Hence, together with

(5), (18) implies that the FCLT (6) holds.

To establish (5) with P = I we can apply Theorem 2. For this purpose, let

X-1(6) f :09(t) and 0C2(0) - f -ItX-I(0)] 2dFe(t) (19)

If sup{a 2(0):0 E R} < and X- I is continuous in the neighborhood of 0, then the
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conditions of Theorem 2 hold with b = 0 and d - 1, because of the well known

convergence 0. - 0* w.p.1. Hence, t-1 C(t) - XC- w.p.l as r -

5. Subcanonlcal Estimator Convergence Rates

In this section we consider examples in which FCLTs hold for the estimation process,

but with a rate y < 1/2. Hence, the cost rate X- 1 appears in the asymptotic efficiency

value v in (11) raised to the power 2- < 1, so that principle (1) needs to be modified as

indicated in Remark 3.6. These examples with subcanonical convergence rates are leading

candidates for VRTs.

Example 5.1. The Kiefer-Wolfowitz Stochastic Approximation Algorithm. Unlike the RM

stochastic approximation algorithm in Example 4.5, the Kiefer-Wolfowitz (1952) stochastic

approximatim algorithm (denoted by KW) yields a subcanonical estimator convergence

rate. The subcanonical convergence rate occurs because now we must estimate derivatives

with finite differences. As before, our goal is to find a parameter a - 0" that minimizes

a smooth function P(O). Now we assume that P(O) can be represented as P(O) - EZ(O).

Successive estimates of 0* are On.+ I = 0.- cX +I where {cn: n 2- 0} is a sequence of

deterministic constants and X. +I is independently generated conditional on O., i.e.,

P(X+ I EA oX0 ,. . , On,Xn) - P Z(On+hn ,) -Z(O n-hn+,) EAl

where Z(0,, + h, . 1 ) and Z(0n - h.+ 1) are independently generated. As in Example 4.5,

the estimation process is Y(t) - 0LI, t Z 0. Suppose that the constants c. and h. are

chosen to be of the form cn - cn - I and h. - hn- 1 3 for c > 0 and h > 0. Assume that

A is three times continuously differentiable on R and that 00 is the unique solution of

P'(0) - 0. We further require that c satisfy cp"(O') > 1/3. Then Ruppert (1982) shows

that, under mild additional regularity conditions,
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n 13(Y(nt) - L) =. c t-bB(t2+1) in D as n - = , (20)

where b = c"(0°), A = b - 5/6, cr2 = c 2K2 /(2A + 1)(4h2 ), K2 = 2 Var Z(0), and B is

a standard Brownian motion.

The cost process C(t) can be treated as in Example 4.5, so that under the regularity

conditions there, (5) holds with P = 1. Combining (5), (20) and Theorem I we obtain

c"13(Y(T(c))-u) =M crk-bB(X 2A +) A rk_-11 3N(0,1) . (21)

The limit in (21) is a centered Gaussian as in the examples of Section 4, but the

asymptotic efficiency rate in (11) is r = 2/3 and the asymptotic efficiency value v is

inversely proportional to X-2/3cr2. The non-canonical estimator convergence rate leads to

the cost rate X- I in v in (11) being raised to the power 2-/ # 1.

Example 5.2. Recursive Derivative Estimators. Suppose that our goal is to estimate

= P'(0o) where P(0) is a smooth function of 0 which can be represented as

P(O) - EZ(O) for each 0 in an open interval about 0o. We can estimate a via the sample

mean X, = n- 1 7 Xk, where the Xk are independently generated, with Xk being the
k-I

random forward difference

Xk = [Zk(9O + hk) - Zk(Oo)]/hk , k 2- 1,

and Zk(Oo + hk) and Zk(Oo) are independently generated. The resulting estimation process

is Y(t) = X aJ, t : 0. This estimator is a recursive version of a derivative estimator

ni

studied by Zazanis and Suri (1986). Their estimator is n- I X: Xk., where
k,,l

Xk,, = (Zk(Oo + h.) - Zk(0o)]/hn. In contrast to Zazanis and Suri's estimator, note that we

can easily compute our X +1 from X,, by setting

=+ (nXn +X+ 1)1(n + 1),
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but our estimator is harder to analyze because the random variables Xk are not identically

distributed. Thus this example is not a special case of Example 4.1.

Suppose that "r(e) is the computer time required to calculate Z(e) and 4 k is the time

required to compute Xk from Zk(eo + hk) and Zk(Oo). Then a reasonable approximation

for the cost process might be

C() = ('rk4o + hk) +rk(Oo) + 4k), t aO,
k-I

where the r.v.'s Trk(OO + hk) and 'Tk(eO) are independently generated. As in Example 4.5,

it is possible to impose conditions so that we can apply Theorem 2 to obtain (5) with

S= 1.

In order to apply Theorem 1 to characterize the asymptotic efficiency, we establish a

FCLT for the estimation process Y. The limit process is of particular interest because it is

not centered. Hence, the approach to asymptotic efficiency in Remark 3.3 is not possible.

Theorem 4. Suppose that Z(O) = Z(0O) as 0 - eo and that {Z(e) 2 : eo - es 0 :5 0o + e}

is uniformly integrable. If P is twice continuously differentiable in (eo - a, eo + a) and

- h= M- 14 with h > 0, then

e -1/4(Y(tl/) -a) =V inD ase -o
t tI 14

where K2 = 4VarZ(00 )13h2 , "1 = 2P"( 0 )h/3 and B(t) is standard Brownian motion.

Hence, under the conditions of Theorem 4 and (5),

c114 (Y(T(c)) - cL) - = J( 13/2 4) + 71 g X-114N(- ,K2) in R as c -

and, under the extra conditions of Corollary 1 to Theorem 1,
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lim c1 /2 R(c) ff L"() X-1/ 2 (K 2 + 12) . (22)

Now the asymptotic efficiency principle in Section 4 needs to be modified in three

ways: First, the asymptotic efficiency rate in (11) is r = 1/2 instead of r = 1; second, the

asymptotic cost rate X- 1 appears in the value v in (11) in the form X- 112 instead of X- 1 ;

and, third, the variance has to be replaced by the second moment.

An important question that arises in this setting is the choice of the constant h that

determines the difference increment hk = hk - 1/4 used in the k th finite-difference

approximation Xk. For example, in the setting of (22), we want to minimize the second

moment of the limiting normal distribution,

K2 + 2 = 4VarZ(0O) +4"(00)'h (23)3h 2  9

By differentiating, we see that the value of h that minimizes (23) is

3'f 3Var Z(Oo)
h"(90)2  (24)

This analysis based on (22) is equivalent to using a squared error loss function. If,

instead, the loss function were L(a) = Ia -a IP for p 0 2, then we would want to

minimize the pth absolute moment of the limiting Gaussian distribution, which typically

leads to a different minimizing value h. Thus, when the loss function does not satisfy the

conditions of Corollary 1 to Theorem 1 and the limiting distribution Y( l) is not centered

Gaussian, the form of the loss function can affect asymptotic efficiency.

Example S.3. More General Recursive Estimators. We now consider a generalization of

Example 5.2 that includes certain replication schemes for limiting expectations in Fox and

Glynn (1989b). Suppose that the parameter a can be represented as the limit of EX. for a

sequence of random variables {X. :n 2 1}. The proposed estimator is the sample mean X
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where the r.v.'s X are taken to be independent (but typically not identically distributed).

Then the estimation process is Y(r) = X [ , t 2- I.

As in Example 5.2, let Xk = Xk - EXk. We characterize the limiting behavior by

relating the asymptotic behavior of EX2 and EX. - a as n - =. There are three cases, one

of which involves a non-centered Gaussian limit, as in Example 5.2.

Theorem . Suppose that {n2"-X.: n 2 1} is uniformly integrable and n2"-EX, - 02 as

n - for0< y : 1/2. Suppose thatnl(EYX-a) -basn -w,0< - < 1.

(1) If -n > y, then
1/2

E-(Y(r/e) - a) 21/ B [2--' -
(2- 2 -j) t

(b) If -n = y, then,

i/nD ase-0.
2 ) t 1-Y

(c) If -, < y, then

-(Y(t/E) - ) P-- inD ase-0.1-il

The following corollary describes the combination of Theorem 5 with a SLLN for the

cost process. Motivated by Fox and Glynn (1989b), we allow nonlinear growth.

Corollary. In addition to the assumptions of Theorem 5, suppose that the cost of

generating X. is 'r where {r.} is an independent sequence with n -PE -a and

n - 0Vari. -dwhere p > - 1,a >0, < 2p+ 1. Then

n

n-_P-_1 rj - a  w.p.l asn-m.
I-a l+p

(a) If iq > "y, then
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S02 1/2 a 'Y/(I +p)

c)- -) 2- yJ ( -+pJ N(0,1) +R asc- .

(b) If = , then

1/2 v' 1 p

c 'y/((+P)(Y(T(c)) - ) ) N (0,1)

+ a _f/0 +P b inR asc-c.

(c) If -n < y, then

( c)) -( a I( b inR as c -c I(I+P(Y(T~c) I )= + p) I -'n

Typically -y < 1/2, so that "y/(1 + p) < 1/2 and the convergence rate of both Y(t) and

Y(T(c)) is subcanonical. However, Theorem 5 and its Corollary also cover the canonical

convergence when -y = 1/2 and p - 0.

Although not stated in the full generality of the resuts in Fox and Glynn (1989b),

because the results there permit non-polynomial growth rates, Theorem 5 and its Corollary

provides improvements by treating recursively defined estimators and allowing the rk's to

be random.

Example 5.4. Long-Range Dependence. Subcanonical estimator convergence rates also can

arise in the estimation of steady-state means as in Example 4.3 when there is long-range

dependence in the underlying stochastic process X. Instead of (16), a FCLT may hold

with y < 1/2. For examples of long-range dependence, see Mandelbrot (1977),

Taqqu (1982), Cox (1984), Vervaat (1985) and references cited there.
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6. Supercanonlcal Estimator Convergence Rates

In this section we consider a variant of a rotation estimator proposed by Fishman and

Huang (1983) and show that it possesses a supercanonical rate of convergence. We also

explain the supercanonical convergence by showing the connection to numerical integration

using the rectangular rule, as discussed on p. 53 of Davis and Rabinowitz (1984).

Example 6.1. Monte Carlo Integration with Rotation. Our goal is to estimate

t = f f (x)dx. Note that at = Ef (U) where U is uniformly distributed on [0,1] and that

U 9x is also uniformly distributed on [0, 1] for any x, where 9 denotes addition modulo

one. Hence, we obtain an unbiased recursive rotation estimator by setting Y(t) = YL,

where

2 nY ,Xk , n ;- I , (25)
n(n+l) k-i

and

k-i

Xk= flUke9J , k2I. (26)

The asymptotic behavior of X. alone can be regarded as a stochastic analog of a well

known theorem for Riemann sum (rectangular rule) approximation of Riemann integrals;

see p. 53 of Davis and Rabinowitz (1984).

Theorem 6. Suppose that the derivative f' of f exists, is bounded and is Riemann

integrable. Then

1
(X. - na) 1 (f(1) -f(0)))(U - -L) in R as n -

2

and {IX, - naLJP n 1} is uniformly integrable for all p > 0 so that
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1

E(IX, -ncLI p )- If (I) -f(O)IPE[IU - -IP] as n- (27)
2

Now we obtain the FCLT for the estimator Y. Let rx] be the smallest integer greater

than x. (For x integer, LxJ = x and [x] = x + 1.)

Theorem 7. Under the conditions of Theorem 6 with Xk in (26),

1- /2 AndXk - Lnt] [nt] If (1) -f (0) 1aB(t) in D [O, =), R) as n -

so that

e-3/2 (Y(t/e) - a) * If (1) - .f (0) 1 B(r) inD((O,oc), R) as a--0N/'3 t 2

Let 'k be the r.v. representing the time to generate Xk. Since k function evaluations

are required to generate Xk, it is reasonable to assume that Erk = ak + b and

Var 'Tk = ck + d for nonnegative constants a, b, c and d. (We expect c and d to be small.)

Then, by Theorem 2,

n-2 , k "- a w.p. as n - (28)
k-I

Corollary. With (28) and the FCLT for Y in Theorem 7,

c3/4(Y(T(ct)) - cL) =* If(1 )-f(0)j B(V'a) inD asc- =
NT t/a

c3/4(Y(T(c)) - a) =: a34Lf(1)-f(0)1 N(0,1) in R as c -

and, assuming a loss function as in Corollary 1 to Theorem 1 plus uniform integrability,

lim C312 R(c) - a312[f() -f(0)]2 L " cS -
C-3 3 2
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7. Independent Replications Together with Other Estimators

We now consider independent replications together with other estimators. Let the

framework in Section I be modified by having the experiment in (iii) be a k-tuple

{(yt , C'):I r i :5 k} of independent stochastic processes. (The superscript is an index,

not a power.) Let the overall cost process be C(t) - CI(t) +...+ Ck(r). Suppose that we

also combine the observations by averaging in the usual way, i.e., by using the estimator

Y(r) = [Y1(t) +... + yk(t)]/k.

We are thinking of the number k of replications being fixed with the length of the

experiment being indexed by t. The final estimator is then

k-'Y(T(c)) = [Y'(T(c)) +...+ Yk(T(c))]/k (29)

where T(c) is defined as before.

With this modified framework, it is of interest to know how independent replications

affect the efficiency of an experiment. Hammersley and Handscomb (1964), p. 51, assert

that independent replications do not alter the efficiency. We show that this is the case

with a centered Gaussian limit if and only if "y/A - 1/2 in (6).

Theorem S. (a) If the conditions of Theorem I hold for each i, then

-*'(yj(t) - t) =* k- 1[ ql(t) +...+ V(t)] in D as a - 0.

If, in addition, (5) holds for each i, then

t -C(t) -kX - P w.p.1 as t - ,

so that

c- 11PT(c) - k-"). w.p.1 as c - cc

c [Y(T(ct)) - a] p k-[1(k-X ) +...+ J(k-PtllP)] in D as c -
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and

cl'/[Y(T(c)) - ]= k')-' ( /1(1) +...+ V(1)) in R as c -

(b) If, in addition, QJ(1) d V(p.,cr2), then 1(I) +... + Vk(1) N(kp.,k 2) and

c' / [Y(T(c)) - (] = k ( x -Y (p+N(0,1)) inR as c -=.

At least when p. = 0, Theorem 8(b) implies that independent replications cause the

efficiency to get better, remain unchanged or get worse, respectively, when Y/ < 1/2,

y//p = 1/2 or -y/p > 1/2.

8. Proofs

Proof of Lemma 1. Suppose that :-AC(r) - X-  w.p.1 as t - =. Then T(c) - = w.p.1 as

c--. Since

C(T(c) - 1) S c S C(T(c)) for all c , (30)

we can divide through by T(c)O in (30) and let c-= to get c1lT(c)P -XO as c -.

Finally take Pth roots. Starting with c- "0T(c) - . w.p.I as c - =, use

T(C(r) - 1) :S t - T(C(t)) for all t

and reason similarly.

Proof of Lemma 2. We actually establish a stronger result.

Lemma 3. Let X(r) be a random element of D([O,=),R). If t-OX(t) -X w.p.I as t -

for some A > 0, then for each T > 0

sup {IaOX(t/f) - 1 II - 0 w.p.1 as a - 0.
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Proof. For arbitrary 8 > 0, choose to so that I t- X (t) - X I < 8 for all t > to which we

can do by the assumed w.p. 1 convergence. Then considering the supremum separately

over [O,eto] and [ata, T], we obtain

sup lepX(t/e) -Xtl xr 1: sup {IX(r)l}+x(ero)A

+ sp fI T(r/e) _-XI1

sup tof X() 1}+ X(u-o)P + TAB

Since X is a random element of D, 0su {lX(t) 1} < =. Finally, let e - 0 and then let

6 - 0 to obtain the desired result.

Proof of Theorem 1. By Lemmas 1 and 2, the SLLN (5) for C(t) implies a FSLLN for

T(c). By (4) and Theorem 4.4 of Billingsley (1968),

in D ((0, o), R) x D([0, =), R) as c - c. Now apply the continuous mapping theorem

(Theorem 5.1 of Billingsley) with the composition map, which is continuous because Xt11 p

is continuous and strictly increasing; see Theorem 3.1 of Whitt (1980). We must also

make sure that the range of c-1/PT(cr) is contained in the domain of c'Y/P[Y(c 1 /Ps) - cL].

Since we are establishing convergence in D ((0, M), R), it suffices to establish convergence

in D([t,,o),R) for all tj > 0; see Section 2 of Whitt (1980). For any given *1, choose to,

such that k4t'P > to,, so that c-IIAT(ct) > to, for t a tj w.p.1 for ail sufficiently large c.

Since the limit process 09I is continuous at t w.p.1 for each t, the convergence in (31) also

holds on D([rc, =) x D([t 1, =)). Then replace c -"0T(ct) by max{rc,,c "0 T(cr)} on [t 1, )

and apply Theorem 4.1 of Billingsley to show that the composition argument above

remains valid on D (Crc,,c), R) x D ((i', =).R). This yields the desired weak convergence

(4) in D([:1 ,sc),R). Since tj was arbitrary, we obtain convergence in D((0,uc),R). To
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establish (7) from (6), use the continuous mapping theorem with the projection map,

p. 121 of Billingsley. To see that 'MI(X) AX-*'I(1), note that Od, X'"OJ((Xr) in (3)

and leta- 0.U

Proof of Corollary 1. Using Taylor's theorem, we expand L [Y(T(c))] about OL to get

L [Y(T(c))] = 2- 1L"(e,)[Y(T(c)) -a],

where falls between Y(T(c)) and a. Note that tc E a as c - =c by virtue of (8) and

L", L"(cu) by the assumed continuity of L". Hence C2*j'OL(Y(T(c))) =:. ~k")

in D as c - =.* Finally, (10) holds by virtue of the uniform integrability.

Proof of Corollary 2. Since L[Y(T(c))) = IY(T(c)) - at IP,

cP"'AL (Y(T(c))] ==D X-P' IV() IP in R as c - c

from Theorem 1 and the continuous mapping theorem. Hence, (12) follows from the

assumed uniform integrability. U

Proof of Theorem 2. We show that

and

The first limit follows from the SLLN for martingale differences, p. 243 of Feller (1971),

because under the stated conditions

i -~(2h +I) Var [,, - E (rI S-i <cc
NMI

The second limit follows from the following lemma.
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Lemma 4. If {ak: k 2t 1} is a sequence of real numbers such that k-bak - a as k - = for

b > - 1, then

ljmn-lb 1, ak = a/(1 + b)
nM k-i

Proof. Suppose that a > 0. (Similar arguments apply for a = 0 and a < 0.) Fix an

arbitrary e > 0. Let ko be such that a (I - s)kb :5 ak, : a (I + e)kb for all k a ko. Then,

for all n a o

-nl ,b (IaI +ajb) + a(1I anb j
J-1 J-1

7, a-- Z 5 a n , Jaji + a(l + e)nb

Since fl 1 b : =b n- 1 1: (jn)b is a Riemanfi sum approximation to the integral
J-1 J-1

fxb dr = (I + b) 1 we can let n - = and then a -O0to obtain the desired result.
0

Proof of Theorem 3. We use the assumed weak convergence and the Skorohod

representation theorem, see Whitt (1980), to construct versions such that

- .] - (t) and ke(a') -t uniformly over the interval [a, b] w.p.1 where X,

are the homeomorphisms of (0, wc) associated with the Skorohod J, topology. Then we

use the continuous differentiability of g to expand g (4i6Q,(X:))) as

£G-[(406Q(e)) - g W.) - Vg(v6 (r))e7[-$s()P6() - W.& (32)

where v6 (t) is on the line segment joining *,s(X 6(:)) and L, a S t s b. This implies the

desired conclusion.

Proof of Theorem 4. This is a special case of Theorem 5(b) with y-1- 1/4.
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Proof of Theorem 5. We can express t(Y(t/e) - cL), except for a factor of (t/e)/ Lt/J, as

[L/l tle] A Ltj
E x - CXtt = + (EX1 - ,,) + (e Lt/ej - r)a. (33)

To treat the first term in (33), we apply the martingale FCLT on p. 340 (part b) of Ethier

and Kurtz. For this purpose, note that

Let]
M'.(t)-- vXj , r a0 ,

is a martingale with quadratic variation process

At 2-2*j y, , t - 0
AEXI , 0O

By Lemma 4, since n X- - cr2 for 2y - 1 > - i,

A, Cr2 t2-2-j
A(t) - - - ' as a - 0 .

2-2y a.O

By Lemma 3, this convergence is uniform on bounded intervals. Furthermore, for any

8> 0,

A,(T) - E(osup 1M6(r)-M.(t-)12] = 2 2 "E[ max X]
OstsT iS 1STle

2-- T/tJ] '2

i-i

VIC] ^2 ^2tr, f2- X. > - *j

~ +.~ kT)2-yEXk Xi > 8(kITk12*jC1 ]
k-i

2-- 2 2* - 2 ^2 -yf 1 0but since {n 2 X.-)} is uniformly integrable, k 'IE[Xik; Xk > 8(k/T)- 2"C-]-0

uniformly in k as e - 0. Since 8 was arbitrary, we conclude that A,(T) - 0 as a- 0.

Hence,

Mjr) _* [a 2/(2-2y)]112B(t2-2") in D ase -0. (34)
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Turning to the second term in (33), we apply Lemma 4 to deduce that

it/fl b
(fIt) I -  (EX, - C) -

By Lemma 3,

1 -- nLt/ejbtl'1lE (EXI - ) - -7- in D as e - 0 (35)i-i 1-l

Finally, we have the three results (a), (b) and (c) by combining (34) and (35).

Proof of the Corollary to Theorem 5. The SLLN for C(t) = n - P- 1  :, follows from

Theorem 2 with = 1 + p and X- 0 = a/(l + p). The rest follows from Theorems 1 and

5.

Proof of Theorem 6. If f(0) f(1), then f(xec) is continuous for all c and

(X. - na) -0 w.p.1 by (2.1.10) on p. 53 of Davis and Rabinowitz (1984). (The argument

there remains valid if f is differentiable everywhere except at one point where left and

right derivatives exist.) Hence, add a linear function to f to make f(0) = f(1) and apply

Lemma 5 below to the linear function. (Of course, both the integral and the

approximating sum are additive for the two functions.) For the uniform integrability, note

that the bounds in (2.1.8) on p. 53 of Davis and Rabinowitz apply uniformly to the

translation point U.

Lemma S. Suppose that f (x) - ax, 0 S x : 1. Then

2 n Nt tha

Proof. Note that
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-'Xgn-a +R --=fE+ --(U--)

n 1 n lnn 2 n 2k-o (

Proof of Theorem 7. Since the sequence of uniforms {Uk} is i.i.d., {Xk :k 1} is an

independent sequence with EXk = kct. As in the proof of Theorem 5, we apply the

martingale FCLT on p. 340 of Ethier and Kurtz (1986). With Xk = Xk - ka,

n 1/2 It
Mn(t) = 2;- 7 Xk

n+l k-I

is a martingale and the associated quadratic variation process

4n Lndl v ar (1- Cf - f (o))2 h -
Ant -(n+1)2 k-I 3

using the moment convergence established in Theorem 6. Also, for e > 0,

E[ up IM(t)-M(t-)I2] S a+ - 4 (n 2 E{ ; 2 > (n+) 2 n .
0 S s T k-i (n+l)' X k>en+12n1

When we let n - =, the second term goes to zero by the uniform integrability derived in

Theorem 6. Letting a 0, we find that E[osup IMn(t) -Mn(t-) 2 ] 0. Hence, we have

the FCLT for M.. Since

(Intl rn:) (Y(r) - 00 xk-=Lnt] rntl
2 2[

we obtain the FCLT (4).

Proof of Theorem 8. The FCLT for Y holds by Theorems 3.2 and 5.1 of Billingsley. The

rest is elementary.
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